Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600164

RESUMO

Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Melhoramento Vegetal , Genes de Plantas , Ascomicetos/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética
2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069424

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a member of the family Coronaviridae and the genus Alphacoronavirus, primarily affects piglets under 7 days old, causing symptoms such as diarrhea, vomiting, and dehydration. It has the potential to infect human primary and passaged cells in vitro, indicating a potential risk of zoonotic transmission. In this study, we successfully generated and purified six monoclonal antibodies (mAbs) specifically targeting the spike protein of SADS-CoV, whose epitope were demonstrated specificity to the S1A or S1B region by immunofluorescence assay and enzyme-linked immunosorbent assay. Three of these mAbs were capable of neutralizing SADS-CoV infection on HeLa-R19 and A549. Furthermore, we observed that SADS-CoV induced the agglutination of erythrocytes from both humans and rats, and the hemagglutination inhibition capacity and antigen-antibody binding capacity of the antibodies were assessed. Our study reveals that mAbs specifically targeting the S1A domain demonstrated notable efficacy in suppressing the hemagglutination phenomenon induced by SADS-CoV. This finding represents the first instance of narrowing down the protein region responsible for SADS-CoV-mediated hemagglutination to the S1A domain, and reveals that the cell attachment domains S1A and S1B are the main targets of neutralizing antibodies.


Assuntos
Alphacoronavirus , Doenças dos Suínos , Ratos , Animais , Humanos , Suínos , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Monoclonais , Anticorpos Neutralizantes/metabolismo
3.
Parasit Vectors ; 15(1): 347, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175964

RESUMO

BACKGROUND: It has been reported that the NF-κB pathway, an important component of host defense system against pathogens infections, can be differentially modulated by different Toxoplasma gondii strains, depending on the polymorphism of the GRA15 protein. The recently isolated Toxoplasma strain T.gHB1 is a type 1 (ToxoDB#10) strain but shows different virulence determination mechanisms compared to the classic type 1 strains like RH (ToxoDB#10). Therefore, it is worth investigating whether the T.gHB1 strain (ToxoDB#10) affects the host NF-κB signaling pathway. METHODS: The effects of T.gHB1 (ToxoDB#10) on host NF-κB pathway were investigated in HEK293T cells. The GRA15 gene product was analyzed by bioinformatics, and its effect on NF-κB activation was examined by Western blotting and nuclear translocation of p65. Different truncations of T.gHB1 GRA15 were constructed to map the critical domains for NF-κB activation. RESULTS: We demonstrated that the NF-κB pathway signaling pathway could be activated by the newly identified type 1 T.gHB1 strain (ToxoDB#10) of Toxoplasma, while the classic type 1 strain RH (ToxoDB#10) did not. T.gHB1 GRA15 possesses only one transmembrane region with an extended C terminal region, which is distinct from that of classic type 1 (ToxoDB#10) and type 2 (ToxoDB#1) strains. T.gHB1 GRA15 could clearly induce IκBα phosphorylation and p65 nuclear translocation. Dual luciferase assays in HEK293T cells revealed a requirement for 194-518 aa of T.gHB1 GRA15 to effectively activate NF-κB. CONCLUSIONS: The overall results indicated that the newly isolated type 1 isolate T.gHB1 (ToxoDB#10) had a unique GRA15, which could activate the host NF-κB signaling through inducing IκBα phosphorylation and p65 nuclear translocation. These results provide new insights for our understanding of the interaction between Toxoplasma parasites and its hosts.


Assuntos
NF-kappa B , Proteínas de Protozoários , Toxoplasma , Células HEK293 , Humanos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
5.
Front Plant Sci ; 13: 918559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755686

RESUMO

Wheat genotypes resistant to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) provide a sustainable means for disease control. We developed a pair of near-isogenic lines H962R and H962S with contrasting reactions to powdery mildew from a residue heterozygous line. H962R was resistant to 127 out of the 136 Bgt isolates collected from the major wheat-producing regions of China and showed a similar virulence/avirulence pattern as Fuzhuang 30, Xiaobaidong, and Hongquanmang carrying resistance allele of Pm5e, but H962S was resistant to none of them. A dominant gene was responsible for the powdery mildew resistance of H962R as revealed by the genetic analysis using segregating populations derived from a cross between H962R and H962S. Molecular marker analysis detected a resistance locus, designated PmH962, on a genetic interval of the chromosome arm 7BL where Pm5e resides. This locus was co-segregated with the functional marker of Pm5e. The PCR-based sequence alignment of Pm5e demonstrated that H962R had an identical sequence as Fuzhuang 30 (haplotype HapGA), and H962S possessed the same sequence as the powdery mildew susceptible cultivar Kenong 199. The genomic compositions of lines H962R and H962S were highly comparable as evidenced by only a small percentage of SNP variations detected by the 16K Genotyping by Target Sequencing (GBTS) SNP array and the 90K Illumina iSelect Wheat SNP array. The two lines performed similarly in the yield-related and plant growth traits investigated, except for greater kernel weight in H962R than in H962S. This indicates that Pm5e has no deleterious effect and can be served as an excellent disease resistance gene in wheat breeding.

6.
J Genet Genomics ; 49(8): 787-795, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35167980

RESUMO

Wild emmer wheat (Triticum dicoccoides, WEW) is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt). A powdery mildew resistance gene MlIW172 originated from WEW accession IW172 (G-797-M) is fine mapped in a 0.048 centimorgan (cM) genetic interval on 7AL, corresponding to a genomic region spanning 233 kb, 1 Mb and 800 kb in Chinese Spring, WEW Zavitan, and T. urartu G1812, respectively. MlIW172 encodes a typical NLR protein NLRIW172 and physically locates in an NBS-LRR gene cluster. NLRIW172 is subsequently identified as a new allele of Pm60, and its function is validated by EMS mutagenesis and transgenic complementation. Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations (PAV) in WEW populations. Four common single nucleotide variations (SNV) are detected between the Pm60 alleles from WEW and T. urartu, indicative of speciation divergence between the two different wheat progenitors. The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection.


Assuntos
Doenças das Plantas , Triticum , Alelos , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Melhoramento Vegetal
7.
Theor Appl Genet ; 135(4): 1235-1245, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006335

RESUMO

KEY MESSAGE: Powdery mildew resistance gene MlWE74, originated from wild emmer wheat accession G-748-M, was mapped in an NBS-LRR gene cluster of chromosome 2BS. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease. Wild emmer wheat (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene was transferred to hexaploid wheat line WE74 from wild emmer accession G-748-M. Genetic analysis revealed that the powdery mildew resistance in WE74 is controlled by a single dominant gene, herein temporarily designated MlWE74. Bulked segregant analysis (BSA) and molecular mapping delimited MlWE74 to the terminal region of chromosome 2BS flanking by markers WGGBD412 and WGGBH346 within a genetic interval of 0.25 cM and corresponding to 799.9 kb genomic region in the Zavitan reference sequence. Sequence annotation revealed two phosphoglycerate mutase-like genes, an alpha/beta-hydrolases gene, and five NBS-LRR disease resistance genes that could serve as candidates for map-based cloning of MlWE74. The geographical location analysis indicated that MlWE74 is mainly distributed in Rosh Pinna and Amirim regions, in the northern part of Israel, where environmental conditions are favorable to the occurrence of powdery mildew. Moreover, the co-segregated marker WGGBD425 is helpful in marker-assisted transfer of MlWE74 into elite cultivars.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Família Multigênica , Doenças das Plantas/genética , Triticum/genética
9.
Plant Sci ; 307: 110879, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902847

RESUMO

Glume hairiness or pubescence that occurs in hexaploid common wheat and its relatives at different ploidy levels is a distinct morphological marker. Current knowledge about the genetic control of wheat glume hairiness is based on study of Hg1 (formerly Hg) on chromosome 1AS. Here, we report characterization of a new locus for hairy glume Hg2 in synthetic hexaploid wheat line CIGM86.944. Hg2 was inherited a dominant allele. Bulked segregant analysis and RNA-sequencing (BSR-Seq) was performed on an F2:3 population from cross CIGM86.944 × Shannong 29 (glabrous glume), which localized Hg2 in a 2.02 cM genetic interval corresponding to ∼1.08 Mb (754,001,564-755,082,433 Mb) on chromosome 2BL in the Chinese Spring reference genome. Gene annotation and expression identified TraesCS2B02 G562300.1 encoding diacylglycerol kinase 5 protein and TraesCS2B02 G561400.1 encoding a wound-responsive family protein as possible candidate genes regulating development of glume hairiness. The identification of Hg2 provides new insights into the genetic control of glume hairiness in wheat.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Triticum/anatomia & histologia , Triticum/genética , Fenótipo , Ploidias
10.
New Phytol ; 228(3): 1027-1037, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32583535

RESUMO

Powdery mildew, a fungal disease caused by Blumeria graminis f. sp. tritici (Bgt), has a serious impact on wheat production. Loss of resistance in cultivars prompts a continuing search for new sources of resistance. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW), the progenitor of both modern tetraploid and hexaploid wheats, harbors many powdery mildew resistance genes. We report here the positional cloning and functional characterization of Pm41, a powdery mildew resistance gene derived from WEW, which encodes a coiled-coil, nucleotide-binding site and leucine-rich repeat protein (CNL). Mutagenesis and stable genetic transformation confirmed the function of Pm41 against Bgt infection in wheat. We demonstrated that Pm41 was present at a very low frequency (1.81%) only in southern WEW populations. It was absent in other WEW populations, domesticated emmer, durum, and common wheat, suggesting that the ancestral Pm41 was restricted to its place of origin and was not incorporated into domesticated wheat. Our findings emphasize the importance of conservation and exploitation of the primary WEW gene pool, as a valuable resource for discovery of resistance genes for improvement of modern wheat cultivars.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas , Triticum/genética
11.
New Phytol ; 228(3): 1011-1026, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32569398

RESUMO

Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.


Assuntos
Resistência à Doença , Triticum , China , Resistência à Doença/genética , Genes de Plantas , Nucleotídeos , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
12.
Theor Appl Genet ; 133(8): 2451-2459, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451599

RESUMO

KEY MESSAGE: A new spot blotch (Bipolaris sorokiniana) resistance gene Sb4 was mapped in a genomic interval of 1.34 Mb on wheat chromosome 4BL. Spot blotch, caused by Bipolaris sorokiniana, has emerged as a serious concern for cultivation of wheat in warmer and humid regions of the world, which results in substantial yield losses and descends with quality. In this study, we identified and mapped a spot blotch resistance gene, designated as Sb4, against B. sorokiniana in wheat. Bulked segregant RNA-Seq (BSR-Seq) analysis and single-nucleotide polymorphism mapping showed that Sb4 is located on the long arm of chromosome 4B. A genetic linkage map of Sb4 was constructed using an F4 mapping population developed from the cross between 'GY17' and 'Zhongyu1211,' and Sb4 was delimited in a 7.14-cM genetic region on 4BL between markers B6811 and B6901. Using the Chinese Spring reference sequences of chromosome arm 4BL, 13 new polymorphic markers were developed. Finally, Sb4 was mapped in a 1.19-cM genetic interval corresponding to a 1.34-Mb physical genomic region of Chinese Spring chromosome 4BL containing 21 predicted genes. This study provides a foundational step for further cloning of Sb4 using a map-based approach.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Bipolaris/isolamento & purificação , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , RNA-Seq , Triticum/metabolismo , Triticum/microbiologia
13.
Plant Mol Biol ; 102(6): 645-657, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32040759

RESUMO

KEY MESSAGE: RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation-reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding D-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.


Assuntos
Beta vulgaris/genética , Beta vulgaris/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Transcriptoma/genética , Aclimatação , Álcalis , Beta vulgaris/enzimologia , Carbono/metabolismo , Ontologia Genética , Genes de Plantas/genética , Folhas de Planta/genética , Plântula/genética , Análise de Sequência de RNA , Cloreto de Sódio/metabolismo
14.
Nat Commun ; 11(1): 680, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015344

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.


Assuntos
Resistência à Doença/genética , Mutação com Ganho de Função , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Ascomicetos/patogenicidade , China , Peróxido de Hidrogênio/metabolismo , Mutagênese , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Quinases/genética , Transformação Genética
15.
BMC Genet ; 20(1): 98, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852431

RESUMO

BACKGROUND: Grain weight is an important yield component. Selection of advanced lines with heavy grains show high grain sink potentials and strong sink activity, which is an increasingly important objective in wheat breeding programs. Rice OsGS3 has been identified as a major quantitative trait locus for both grain weight and grain size. However, allelic variation of GS3 has not been characterized previously in hexaploid wheat. RESULTS: We cloned 2445, 2393, and 2409 bp sequences of the homologs TaGS3-4A, TaGS3-7A, and TaGS3-7D in wheat 'Changzhi 6406', a cultivar that shows high grain weight. The TaGS3 genes each contained five exons and four introns, and encoded a deduced protein of 170, 169, and 169 amino acids, respectively. Phylogenetic analysis of plant GS3 protein sequences revealed GS3 to be a monocotyledon-specific gene and the GS3 proteins were resolved into three classes. The length of the atypical Gγ domain and the cysteine-rich region was conserved within each class and not conserved between classes. A single-nucleotide polymorphism in the fifth exon (at position 1907) of TaGS3-7A leads to an amino acid change (ALA/THR) and showed different frequencies in two pools of Chinese wheat accessions representing extremes in grain weight. Association analysis indicated that the TaGS3-7A-A allele was associated with higher grain weight in the natural population. The TaGS3-7A-A allele was favoured in global modern wheat cultivars but the allelic frequency varied among different wheat-production regions of China, which indicated that this allele is of potential utility to improve wheat grain weight in certain wheat-production areas of China. CONCLUSIONS: The novel molecular information on wheat GS3 homologs and the KASP functional marker designed in this study may be useful in marker-assisted breeding for genetic improvement of wheat.


Assuntos
Clonagem Molecular/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento , China , Frequência do Gene , Estudos de Associação Genética , Tamanho do Órgão , Fenótipo , Filogenia , Proteínas de Plantas/química , Poliploidia , Domínios Proteicos , Locos de Características Quantitativas , Especificidade da Espécie , Triticum/genética , Triticum/metabolismo
16.
Viruses ; 11(1)2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669600

RESUMO

A lytic bacteriophage PHB01 specific for Pasteurella multocida type D was isolated from the sewage water collected from a pig farm. This phage had the typical morphology of the family Podoviridae, order Caudovirales, presenting an isometric polyhedral head and a short noncontractile tail. PHB01 was able to infect most of the non-toxigenic P. multocida type D strains tested, but not toxigenic type D strains and those belonging to other capsular types. Phage PHB01, the first lytic phage specific for P. multocida type D sequenced thus far, presents a 37,287-bp double-stranded DNA genome with a 223-bp terminal redundancy. The PHB01 genome showed the highest homology with that of PHB02, a lytic phage specific for P. multocida type A. Phylogenetic analysis showed that PHB01 and PHB02 were composed of a genus that was close to the T7-virus genus. In vivo tests using mouse models showed that the administration of PHB01 was safe to the mice and had a good effect on treating the mice infected with different P. multocida type D strains including virulent strain HN05. These findings suggest that PHB01 has a potential use in therapy against infections caused by P. multocida type D.


Assuntos
Bacteriófagos/isolamento & purificação , Infecções por Pasteurella/terapia , Pasteurella multocida/virologia , Podoviridae/isolamento & purificação , Animais , Bacteriófagos/classificação , Fazendas , Feminino , Genoma Viral , Camundongos , Camundongos Endogâmicos BALB C , Pasteurella multocida/patogenicidade , Terapia por Fagos , Filogenia , Podoviridae/classificação , Esgotos/virologia , Suínos
17.
Theor Appl Genet ; 130(10): 2191-2201, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711956

RESUMO

KEY MESSAGE: A stripe rust resistance gene YrZH22 was mapped by combined BSR-Seq and comparative genomics analyses to a 5.92 centimorgan (cM) genetic interval spanning a 4 Mb physical genomic region on wheat chromosome 4BL1. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases of wheat and severely threatens wheat production worldwide. The widely grown Chinese wheat cultivar Zhoumai 22 is highly resistant to the current prevailing PST race CYR34 (V26). Genetic analysis of F5:6 and F6:7 recombinant inbred line (RIL) populations indicated that adult-plant stripe rust resistance in Zhoumai 22 is controlled by a single gene, temporarily designated YrZH22. By applying bulked segregant RNA-Seq (BSR-Seq), 7 SNP markers were developed and SNP mapping showed that YrZH22 is located between markers WGGB105 and WGGB112 on chromosome arm 4BL. The corresponding genomic regions of the Chinese Spring 4BL genome assembly and physical map of Aegilops tauschii 4DL were selected for comparative genomics analyses to develop nine new polymorphic markers that were used to construct a high-resolution genetic linkage map of YrZH22. YrZH22 was delimited in a 5.92 cM genetic interval between markers WGGB133 and WGGB146, corresponding to 4.1 Mb genomic interval in Chinese Spring 4BL and a 2.2 Mb orthologous genomic region in Ae. tauschii 4DL. The genetic linkage map of YrZH22 will be valuable for fine mapping and positional cloning of YrZH22, and can be used for marker-assisted selection in wheat breeding.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , China , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Ligação Genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
18.
J Genet Genomics ; 44(1): 51-61, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765484

RESUMO

Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from two rounds of interspecific hybridizations. A high-quality genome sequence assembly of diploid Aegilops tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combined approach of BAC pooling and next-generation sequencing technology was employed to sequence the minimum tiling path (MTP) of 3176 BAC clones from the short arm of Ae. tauschii chromosome 3 (At3DS). The final assembly of 135 super-scaffolds with an N50 of 4.2 Mb was used to build a 247-Mb pseudomolecule with a total of 2222 predicted protein-coding genes. Compared with the orthologous regions of rice, Brachypodium, and sorghum, At3DS contains 38.67% more genes. In comparison to At3DS, the short arm sequence of wheat chromosome 3B (Ta3BS) is 95-Mb large in size, which is primarily due to the expansion of the non-centromeric region, suggesting that transposable element (TE) bursts in Ta3B likely occurred there. Also, the size increase is accompanied by a proportional increase in gene number in Ta3BS. We found that in the sequence of short arm of wheat chromosome 3D (Ta3DS), there was only less than 0.27% gene loss compared to At3DS. Our study reveals divergent evolution of grass genomes and provides new insights into sequence changes in the polyploid wheat genome.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Poaceae/genética , Análise de Sequência , Triticum/genética , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...